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Abstract: The study explores the use of AI and ML technologies to optimize quality control in EV production lines. By
applying neural networks and machine learning algorithms, the research achieved significant improvements: a 74.4%
reduction in torque deviation, a 75.9% enhancement in speed consistency, and a 70.8% decrease in defect rates. These gains
also resulted in a 16.0% reduction in production cycle time and a 50.0% decrease in downtime, leading to an 8.4% increase
in Overall Equipment Effectiveness (OEE). The methods employed included Al-driven predictive maintenance, real-time
monitoring, and statistical process control (SPC). Despite the clear benefits, challenges such as integrating these
technologies with existing systems and ensuring robust data infrastructure remain. Future research should focus on
refining these approaches and extending their application across the automotive industry.
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1. INTRODUCTION

The rapid expansion of the electric vehicle (EV) market has highlighted the increasing need for stringent quality
control in manufacturing processes. The complexity inherent in EV production, which often involves the
integration of multiple power sources-such as batteries, fuel cells, and internal combustion engines-presents
significant challenges to maintaining consistent product quality (Zhong et al., 2024). Traditional quality control
methods, while effective in certain contexts, frequently prove inadequate in the face of the dynamic and
multifaceted nature of EV production environments (Gu et al., 2024). In response to these challenges, recent
advancements in Artificial Intelligence (Al) and Machine Learning (ML) have shown considerable promise in
optimizing quality control on EV production lines. Al-driven solutions have been particularly successful in
predictive maintenance, effectively reducing unplanned downtimes and enhancing overall production efficiency
(Liu et al., 2024). Moreover, the application of ML algorithms has been demonstrated to optimize powertrain
operations, thereby ensuring smoother transitions and minimizing the occurrence of defects during the
manufacturing process (Xu et al., 2024). According to Wang et al. (2024) the integration of Deep Q Network and
PPO enhances autonomous robot navigation by improving both path planning and decision-making through
ongoing interaction with the environment.

The integration of Al and ML into quality control practices is not limited to the automotive industry. Deep learning
techniques have been employed in semiconductor manufacturing to detect and classify defects with unprecedented
accuracy, a method that holds considerable potential for adaptation in EV manufacturing (Gao et al., 2016).
Additionally, Al-enhanced statistical process control (SPC) has been utilized to identify patterns and anomalies in
real-time production data, enabling immediate corrective actions and preventing the escalation of quality issues
(Liu et al., 2024). Despite the clear advantages, implementing Al and ML in EV production lines presents its own
set of challenges. The high variability and complexity of manufacturing environments necessitate the development
of adaptive models capable of real-time responses to changes (Li et al., 2018). Yan et al. (2024) introduced a deep
convolutional neural network model that significantly boosts image super-resolution by efficiently capturing
diverse features and refining high-frequency details. Furthermore, the effectiveness of these technologies is
heavily reliant on the quality of the data used for training, as noted by Zhou et al. (2024), making data management
a crucial aspect of successful Al deployment in quality control. The work by Xu et al. highlights the effectiveness
of emotion recognition technology in real-time applications, particularly in improving user interaction by
leveraging CNN and LSTM to interpret emotional cues from facial expressions and voice data. Their findings have
significantly influenced the methodological approach taken in this study.
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This study aims to build on these technological advancements by investigating the strategic integration of Al and
ML into EV production line quality control. By addressing the specific challenges associated with EV
manufacturing and leveraging state-of-the-art technologies, this research seeks to contribute to the ongoing
enhancement of quality control processes in the automotive sector.

2. METHODOLOGY

2.1 Research Design

The primary objective of this research is to optimize quality control on electric vehicle (EV) production lines
through the integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. The research
framework is structured to address the multifaceted nature of EV production, which involves complex systems
integrating multiple power sources and advanced powertrain components. This study adopts a systematic approach,
starting from data collection on the production line to the deployment of predictive models aimed at improving
product quality and reducing defects.

The research process is divided into three major phases: (1) Manufacturing Process Analysis, (2) Data Basis
Establishment, and (3) Machine and Deep Learning Implementation. Figure 3 illustrates the overall workflow and
interaction between these phases. Each phase is designed to progressively refine the quality control measures by
incorporating advanced computational techniques, ensuring the production line remains adaptable to the dynamic
challenges of EV manufacturing.

2.2 Application of Multi-Power Source Schematic

The schematic provided in Figure 1 represents the key control nodes and energy flow within a multi-power source
electric vehicle. Each node, including the motor, generator, and energy sources (battery, fuel cell, and engine),
plays a critical role in maintaining system stability and efficiency. The control strategies at these nodes are
optimized using Al algorithms that dynamically adjust power distribution and energy management based on
real-time data inputs (Yang et al., 2024). By employing Al-driven control, the system can better respond to
fluctuations in power demand and supply, thereby minimizing energy loss and improving overall vehicle
performance.
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Figure 1: Schematic of Multi-Power Source Electric Vehicle Architecture

2.3 Data Collection and Processing

The success of Al and ML implementation in quality control hinges on the availability and accuracy of production
data. Data collection is initiated at multiple stages of the manufacturing process, as depicted in Figure 2. Sensors
embedded in the production line continuously monitor design factors, operational parameters, and product quality
metrics. This data forms the basis for training AI models that can identify patterns, predict potential defects, and
recommend corrective actions. The collected data undergoes preprocessing to ensure its suitability for model
training. This involves cleaning the data to remove noise, normalizing values to facilitate comparison across
different metrics, and segmenting the data into training and testing sets (Wang et al., 2012). Historical production
data, as well as real-time inputs from the manufacturing floor, are used to train machine learning models, which are
subsequently tested and validated against unseen data. The final step involves deploying these models onto the

41



World Journal of Innovation and Modern Technology, Vol. 7, Issue 5, (Oct)
I SSN 2682-5910

2024

production line, where they operate in real-time to monitor and optimize quality control processes.
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Figure 2: Workflow of Data-Driven Quality Control in EV Production Line
3. EXPERIMENTAL RESULTS

3.1 Performance Evaluation of AI and ML Models

The experimental phase focused on assessing the performance of Al and ML models in optimizing quality control
on the electric vehicle (EV) production line. Key metrics such as prediction accuracy, response time, and model
stability were measured to evaluate the effectiveness of the implemented models. Table 1 provides a summary of
these performance metrics across various Al and ML models.

Table 1: Performance Metrics of Al and ML Models in Quality Control

Model Type Prediction Accuracy (%) Response Time (ms) Model Stability (6)
Neural Network 94.8 120 0.02
Decision Tree 89.5 85 0.05
Random Forest 92.3 110 0.03
Support Vector Machine 93.2 140 0.02

As demonstrated in Table 1, the neural network model achieved the highest prediction accuracy of 94.8%,
although it required a slightly longer response time. Conversely, the decision tree model exhibited the fastest
response time but at the cost of lower accuracy (Tu et al., 2023). These results indicate that neural networks might
be preferable in scenarios demanding high precision, while decision trees could be more suitable in time-sensitive
applications where rapid decision-making is critical.

3.2 Quality Improvement Analysis
Table 2: Comparison of Q/C Metrics Before and After AI/ML Implementation

Quality Before AI/ML After AI/ML Improvem
Metric Implementation Implementation ent (%)
Torque
Deviation 12.5 32 74.4
(Nm)
Speed
Consistency 5.8 14 75.9
Deviation
(km/h)
Defect Rate
%) 72 2.1 70.8

To quantify the improvement in quality control following the implementation of Al and ML models, data was
collected and analyzed both before and after the integration of these technologies. As shown in Table 2, there was
a marked improvement in all measured quality control metrics. Torque deviation decreased by 74.4%, and speed
consistency deviation improved by 75.9%. Additionally, the defect rate was reduced by more than 70%, indicating
a significant enhancement in production quality following the implementation of Al and ML models (Sun et al.,
2024).

3.3 Enhancement in Production Efficiency

In addition to improving quality control, the integration of Al and ML models also led to significant improvements
in production efficiency (Shi et al., 2024). Key efficiency indicators, such as production cycle time and downtime,
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were monitored and compared before and after the implementation of these technologies. Table 3 summarizes the

changes in these efficiency metrics.

Table 3: Production Efficiency Metrics Before and After AI/ML Implementation

Efficiency Before AI/ML After AI/ML Improvement
Metric Implementation Implementation (%)
Production
Cycle Time (s) 250 210 16.0
Downtime
(min/month) 180 %0 >0.0
Overall
Equipment
Effectiveness 825 89.4 8.4
(OEE)

Table 3 indicates a 16% reduction in production cycle time and a 50% decrease in downtime, which contributed to
an 8.4% increase in Overall Equipment Effectiveness (OEE). These results underscore the dual benefit of Al and
ML integration in both enhancing quality control and boosting production efficiency on the EV manufacturing
line.

3.4 Impact of Driving Cycle Simulations on Quality Control
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Figure 3: Driving Cycle Simulations and Vehicle Dynamics for Quality Control Optimization

In the Figure 3, which outlines the driving cycles, kinematic forces, and a numerical model of the vehicle dynamics,
is integral to understanding the impact of AT and ML on the production line. The data extracted from Figure 3 was
used to simulate various driving conditions, allowing the models to be tested against real-world scenarios. This
simulation included a detailed examination of efficiency, torque, and speed parameters, which were critical for
tuning the machine learning algorithms. The efficiency map and torque-speed relationship depicted in Figure 3
enabled a precise calibration of the production process. By identifying optimal operating zones within the
efficiency contours, Al models were able to adjust production parameters in real-time, ensuring vehicles were
manufactured within these optimal zones (Lin et al., 2024). This adjustment not only reduced the occurrence of
defects but also enhanced overall production efficiency.

4. DISCUSSION
4.1 Analysis of Results

The experimental results underscore the substantial impact of Al and ML integration on the quality control
processes within EV production lines. The neural network model, which achieved a prediction accuracy of 94.8%,
exemplifies the critical role of precision in reducing production errors. This high accuracy directly contributes to
the significant reduction in torque deviation by 74.4%, as shown in the results, aligning with prior studies that have
highlighted the effectiveness of Al in managing complex manufacturing processes (Zhang et al., 2024). Wang et al.
(2024) assert that deep reinforcement learning, leveraging DQN and PPO, improves autonomous driving by
autonomously refining decision-making strategies in complex traffic conditions. Similarly, the notable
improvement in speed consistency, with a 75.9% reduction in deviation, further emphasizes the enhanced
operational stability brought about by machine learning algorithms, particularly in managing the intricate
dynamics of EV powertrains (Xu et al., 2024).

The reduction in the defect rate from 7.2% to 2.1% provides compelling evidence of the models' effectiveness in
minimizing inconsistencies that could lead to post-production failures. This aligns with findings from previous
research, such as Wang et al. (2024), who also reported significant reductions in manufacturing defects through the
application of ML techniques. Guan et al. (2024) emphasize that deep reinforcement learning, incorporating DQN
and PPO, optimizes decision-making processes in autonomous driving by continuously adapting strategies to
complex traffic environments. Additionally, the improvements in production efficiency, including a 16.0%
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reduction in cycle time and a 50.0% decrease in downtime, further highlight the dual benefits of these
technologies-not only do they enhance product quality, but they also streamline production processes, leading to
more efficient operations overall (Wang et al., 2024).

Moreover, the correlation between quality improvements and efficiency gains suggests that as Al and ML models
optimize control over critical parameters like torque and speed, they simultaneously reduce the time and resources
required for production (Xia et al., 2023). This relationship, evidenced by the strong positive correlation (r = 0.85)
between torque deviation reduction and cycle time improvement, underscores the holistic impact of these
technologies on manufacturing efficiency. The data supports the conclusion that Al and ML integration is a
transformative approach in EV production, capable of driving both quality and efficiency enhancements in a
competitive industrial environment (Yao et al., 2024).

4.2 Practical Applications and Challenges

While the results demonstrate significant potential for Al and ML in optimizing EV production lines, practical
challenges remain. Deploying these models in real-world production environments involves navigating the
complexities of hardware compatibility and ensuring that models can adapt to the variability inherent in
manufacturing processes (Lin et al., 2023). The success of Al and ML technologies in this context will depend on
robust infrastructure, continuous model training, and the ability to integrate with existing systems-factors that will
determine the scalability and effectiveness of these technologies in broader industrial applications (Sun et al.,
2023).

5. CONCLUSION

This study explored the integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies to
optimize quality control on electric vehicle (EV) production lines. By applying advanced neural network models
and machine learning algorithms, significant improvements were observed in key quality metrics, with torque
deviation reduced by 74.4% and speed consistency enhanced by 75.9%. The defect rate was also significantly
lowered by 70.8%, reflecting a marked increase in product reliability. The implementation of Al and ML models
not only improved product quality but also enhanced production efficiency. The study found that production cycle
times were reduced by 16.0%, and downtime decreased by 50.0%, leading to an 8.4% increase in Overall
Equipment Effectiveness (OEE). These outcomes underscore the effectiveness of using Al-driven predictive
maintenance and real-time monitoring techniques in a high-variability production environment. In addition to
these performance improvements, the study highlighted the practical benefits of using Al-enhanced statistical
process control (SPC) methods, which allowed for more precise detection and correction of anomalies in real-time.
This led to a more stable and consistent production process, minimizing the risk of defects and improving overall
operational efficiency.

Despite the clear advantages, the study also identified challenges, particularly in the deployment of these
technologies in real-world settings. The complexity of integrating Al and ML with existing manufacturing systems,
along with the need for high-quality data and robust infrastructure, presents significant hurdles that must be
addressed to fully leverage these technologies. Future research should aim to further refine the control algorithms
to enhance their accuracy and adaptability in complex manufacturing environments. Additionally, expanding the
application of these technologies to other sectors of automotive manufacturing could provide further insights into
their broader potential.
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