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Abstract: This paper reviews recent developments in deep learning techniques for multimodal image fusion and 

segmentation of brain tumors. Gliomas, the most common tumors of the central nervous system in adults, require accurate 

image segmentation to support effective diagnosis and treatment. Multimodal image fusion integrates information from 

different imaging modalities, offering a more comprehensive and precise characterization of tumors. In this review, we 

introduce the characteristics of gliomas, outline preprocessing and fusion methods for multimodal images, and summarize 

commonly used deep learning models for glioma segmentation. We also highlight the benefits of integrating attentional 

mechanisms and multiscale features into deep learning architectures. In addition, current evaluation metrics and publicly 

available datasets are discussed. Finally, we address key challenges such as data management, protection of surrounding 

organs, and model interpretability, aiming to provide researchers with a valuable reference for future studies in multimodal 

brain tumor segmentation. 
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1. INTRODUCTION 
 

Gliomas are the most common primary tumors occurring in the brain and spinal cord of adults, accounting for 

approximately 30% of all central nervous system (CNS) neoplasms. According to the World Health Organization 

(WHO) classification, gliomas are divided into grades I to IV based on biological behavior and growth potential. 

Grades I and II are classified as low-grade gliomas (LGG) with a median survival of approximately 5.5 years, 

while grades III and IV are considered high-grade gliomas (HGG) with a significantly shorter median survival of 

around 1.1 years [1,2]. Conventional diagnostic approaches primarily rely on imaging modalities such as magnetic 

resonance imaging (MRI) and computed tomography (CT), which remain the clinical gold standard alongside 

histopathological confirmation. However, these methods are often limited by inter-observer variability and 

suboptimal diagnostic accuracy. Therefore, exploring advanced imaging technologies and automated analysis tools 

is of great clinical relevance [3]. 

 

Different imaging techniques such as CT, MRI, and positron emission tomography (PET) provide complementary 

information about tumor characteristics, as shown in Figure 1 [4]. CT offers rapid imaging and is suitable for initial 

screening but exhibits low soft tissue contrast [5]. MRI provides high soft tissue contrast without radiation 

exposure, making it ideal for detailed brain imaging [6-9]. PET reveals functional and metabolic information but 

lacks fine anatomical detail [10]. PET/CT combines metabolic and structural imaging, while PET/MR integrates 

functional imaging with high soft tissue contrast [11]. Moreover, advanced MRI sequences, including magnetic 

resonance spectroscopy (MRS), magnetic resonance fingerprinting (MRF), chemical exchange saturation transfer 

(APT), diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and 

blood oxygenation level-dependent imaging (BOLD), further enable comprehensive assessment of gliomas [12]. 

Compared with single-modality imaging, multimodal imaging provides more comprehensive tumor 

characterization, laying a foundation for subsequent automatic analysis using advanced machine learning 

techniques. 

 

Recent advances in machine learning, particularly deep learning, have facilitated the automatic delineation and 

diagnosis of gliomas from multimodal images. However, accurate segmentation of glioma regions remains 

challenging. Firstly, extensive data preprocessing and alignment are required due to artifacts in the acquired images 

74

DOI: 10.53469/wjimt.2025.08(07).13



 
                                                                                                                                                                                                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

World Journal of Innovation and Modern Technology, Vol. 8, Issue 7 (Jul) 
ISSN 2682-5910 2025  

  
  

  

  

 
  

[13]. Secondly, the highly variable shapes and sizes of gliomas complicate treatment planning, and even minor 

deviations during segmentation could risk damaging critical brain structures such as the thalamus [14]. Thus, 

precise boundary definition and segmentation are critical research directions. Several review articles have 

summarized the application of deep learning in medical image analysis. Litjens et al. [15] discussed basic deep 

learning architectures and key techniques but did not explore multimodal image fusion methods. Bernal et al. [11] 

focused on applying deep convolutional neural networks (CNNs) in brain MRI analysis without emphasizing 

multimodal fusion strategies. Zhou et al. [16] briefly introduced multimodal fusion but did not investigate the 

performance and applicability of different strategies in specific segmentation tasks. 

 

In this paper, we conduct a comprehensive literature review using databases such as PubMed, Medline, Embase, 

and Cochrane Library. We categorize and summarize multimodal fusion strategies, review recent advances, outline 

available glioma datasets, and briefly evaluate the performance of typical network architectures based on relevant 

metrics. Finally, we discuss current challenges and propose future research directions. 

 
Figure 1: Conventional medical imaging diagram. 

2. MULTIMODAL GLIOMA SEGMENTATION 
 

Multimodal medical image segmentation combines data from different imaging modalities to improve the accuracy 

of segmenting regions of interest (e.g., tumors) in medical images. This technique utilizes the unique advantages 

of each imaging technique. The multimodal image segmentation process is shown in Figure 2. 

 
Figure 2: Multimodal glioma image segmentation process 

2.1 Public Datasets and Preprocessing 

 

2.1.1 Glioma imaging datasets 
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To advance multimodal glioma segmentation, publicly available datasets and standardized preprocessing 

techniques are essential. Datasets used for glioma research typically consist of CT, MRI, and PET images 

accompanied by corresponding pathological labels. These datasets provide researchers with rich imaging and 

clinical information to facilitate the development and validation of various algorithms. Among them, the Medical 

Segmentation Decathlon (MSD) dataset [17] is widely utilized, particularly for brain tumor segmentation tasks. It 

comprises 484 multi-modal MRI scans, each containing four imaging modalities Fluid Attenuated Inversion 

Recovery (FLAIR), T1-weighted (T1w), contrast-enhanced T1-weighted (T1gd), and T2-weighted (T2w). The 

data were collected from 19 different medical institutions and include a subset of the data used in the 2016 and 

2017 Brain Tumor Segmentation (BraTS) challenges [18]. The statistically most commonly used BraTS 2013–

2024 and MSD multi-modal brain tumor dataset, provided by the International Medical Image Computing and 

Computer Assisted Intervention Society (MICCAI), is summarized in Table 1. 

Table 1: Summary of Glioma Datasets 

Dataset name 
Data volume type Image size 

dataset type Training Validation Testing MRI 

BraTS2024 3600 - 900 

T1 

T1Gd 
T2 

Flair 

240x240 

x155 

XX.nii.gz 

BraTS2023 1251 - 219 

BraTS2022 484 - 266 

BraTS2021 1251 219 570 

BraTS2020 369 125 166 

BraTS2019 335 125 166 

BraTS2018 285 66 191 

BraTS2017 285 46 146 

BraTS2016 200 - 191 

BraTS2015 200 - 74 

BraTS2014 200 - 38 

BraTS2013 35 - 25 

MSD 484 - 266 

 

Taking the BraTS2020 multimodal brain tumor dataset as an example (datasets from other years follow a similar 

structure), this dataset consists of 369 training cases and 125 validation cases. The training set includes both HGG 

and LGG, while the glioma grades in the validation set are not disclosed. Each case includes four MRI modalities: 

T1w, T2w, T1gd, and FLAIR. The training dataset provides corresponding ground truth segmentation labels, 

including background (label 0), non-enhancing tumor region (NET, label 1), edema region (ED, label 2), and 

enhancing tumor region (ET, label 4). For visualization, the segmentation labels are commonly represented using 

color codes: green for ED (label 2), red for NET (label 1), yellow for ET (label 4), and black or transparent for the 

background (label 0). The final segmentation task focuses on three tumor subregions: the whole tumor (WT), the 

tumor core (TC), and the enhancing tumor (ET). The WT region includes all tumor-related components (NET, ED, 

and ET), corresponding to the union of labels 1, 2, and 4. The TC region comprises NET and ET (labels 1 and 4), 

and the ET region includes only the enhancing tumor component (label 4). Most of the time, a large number of 

labels used for training are not available for several reasons. Labeling datasets requires experts in the field, which 

is both expensive and time-consuming. The overfitting problem needs to be considered when training large neural 

networks from limited training data [19]. Data augmentation is a way to reduce overfitting and increase the amount 

and diversity of data. Large training data helps in algorithm generalization. It generates more diverse training 

samples by transforming the images in the training dataset (rotating, translating, scaling, flipping, distorting, and 

adding some noise, e.g., Gaussian noise). Both the original and created images are fed into the neural network. 

Various data enhancement techniques, such as random rotation, random scaling, random elastic deformation, 

gamma-corrected enhancement, and dynamic mirroring, can be utilized to solve the overfitting problem during the 

training process [20]. Among the common data enhancement methods are random angle rotation of the image, 

which helps the model adapt to different image orientations; random horizontal or vertical translation of the image, 

which enhances the robustness of the model to displacement changes; random scaling of the image, which helps 

the model deal with tumors at different scales; random horizontal or vertical flipping of the image, which increases 

the diversity of the training samples; and adding random noise to enhance the noise immunity of the model. 

Through these data enhancement techniques, a large amount of diverse training data can be generated to reduce 

the risk of model overfitting and improve the segmentation effect and model generalization ability. 

 

2.1.2 Data preprocessing 

 

Data preprocessing is an important step to ensure the effectiveness of model training and inference, including the 

following aspects.  
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1) Normalization: Due to variations in image acquisition, different brain MRI volumes exhibit varying intensity 

distributions. To mitigate grayscale inconsistencies across images and facilitate subsequent multimodal fusion and 

processing, intensity normalization is commonly employed in glioma segmentation studies. Among these 

techniques, z-score normalization is widely used: for training data, normalization is often performed around the 

tumor region when segmentation masks are unavailable, while for validation data, the entire volume is typically 

normalized. In such approaches, the mean and standard deviation are calculated over non-zero voxels within the 

relevant regions, ensuring that the normalized intensities have zero mean and unit variance. 

 

2) Alignment: Alignment processing ensures that images of the same patient at different time points or different 

modalities are spatially aligned such that each pixel location represents the same anatomical structure in different 

images. Commonly used alignment methods include rigid alignment (translation and rotation) and non-rigid 

alignment (deformation). 

 

3) Registration: The multimodal images are spatially and accurately aligned so that each pixel position represents 

the same anatomical location in different modal images, facilitating fusion and analysis. Commonly used 

alignment methods include feature point-based alignment, image intensity-based alignment, and machine learning-

based alignment. In glioma research, alignment processing can ensure the spatial consistency of MRI, CT, and 

PET images and improve the accuracy of multimodal image fusion and segmentation [21]. 

 

2.2 Fusion Strategies for Multimodal Inputs 

 

Multimodal medical image segmentation plays a crucial role in the segmentation of gliomas, as it combines 

information from different imaging modalities to improve the accuracy and robustness of tumor delineation. In 

early fusion strategies, images from multiple modalities are merged at the network's input layer. In contrast, late 

fusion strategies process each modality independently and combine results at a deeper stage in the network. The 

categorization of common strategies based on the fusion stage is shown in Figure 3. 

 
Figure 3: Multi-modal fusion network structure 

2.2.1 Input-level fusion 

 

Input-level fusion, also known as early fusion, combines multimodal medical images by stacking them along the 

channel dimension at the input stage of a convolutional neural network (CNN). This approach enables joint feature 

learning from the shallowest layers and is widely used for combining different MRI sequences (e.g., T1, T2, T1ce, 

FLAIR) or hybrid modalities such as PET/CT and PET/MRI. Well-established models like 3D U-Net and nnUNet 

have successfully adopted early fusion strategies in glioma segmentation tasks such as BraTS [1, 22]. Despite its 

simplicity and ability to preserve original image information, early fusion tends to ignore modality-specific 

importance, often leading to overfitting to redundant or noisy inputs. Furthermore, it is highly sensitive to missing 

or corrupted modalities, which limits its robustness. 
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2.2.2 Feature-level fusion 

 

Feature-level fusion lies between early and late fusion, offering a compromise by first extracting modality-specific 

representations through separate branches and then combining them at intermediate stages of the network. This 

fusion is typically implemented via multi-stream architectures with independent encoders for each modality that 

merge at certain layers. Common fusion strategies include concatenation, element-wise summation, and attention-

based mechanisms. This approach helps preserve unique modality characteristics while enabling effective cross-

modality semantic integration. For instance, HyperDenseNet introduced by Dolz et al., integrates densely 

connected modality-specific pathways to support multilevel fusion [23], while ME-Net, proposed by Zhang et al., 

performs fusion during decoding to maximize the utility of modality-specific information [24]. Liu et al. further 

improved this by introducing channel-wise attention, allowing the model to adaptively emphasize more 

informative modalities [25]. 

 

2.2.3 Decision-level integration 

 

Decision-level fusion, also referred to as late fusion, combines segmentation predictions from independently 

trained models, each focusing on a specific modality. Common techniques include probability map averaging, 

majority voting, and meta-classification. A key advantage of this strategy is its natural robustness to missing or 

degraded modalities, as each model operates independently. However, the lack of joint feature learning limits its 

ability to capture cross-modal interactions. Moreover, training and maintaining multiple networks increases 

computational and optimization complexity. Although decision-level fusion enhances robustness, it has gradually 

fallen out of favor as integrated, end-to-end architectures have become more prevalent and effective. For example, 

Sun et al. [26] proposed an ensemble-based approach in the context of the BraTS challenge, where multiple 

modality-specific networks were trained and their outputs were fused using a majority voting strategy, showing 

promising results in brain tumor segmentation. 

 

2.2.4 Fusion under missing modalities 

 

Handling missing modalities is a critical challenge in real-world medical imaging scenarios, where patients may 

undergo incomplete scanning due to cost, time, or clinical constraints. Existing strategies for dealing with missing 

MRI sequences can be broadly categorized into three main approaches: hetero-modal segmentation, missing data 

synthesis, and knowledge distillation. Hetero-modal segmentation methods, such as HeMIS, address this issue by 

replacing the missing modality with statistical representations (e.g., mean, variance) computed from the available 

data, thereby enabling model training under incomplete input conditions [27]. However, HeMIS assumes equal 

informativeness across all modalities, an assumption that may not hold in practice. Recent approaches have 

employed generative models, such as variational autoencoders (VAEs), to reconstruct missing modalities or infer 

shared latent representations. For example, Zhu et al. proposed the XLSTM-HVED model [28], which integrates 

a hetero-modal variational encoder-decoder framework with a Vision XLSTM module and a multi-task learning 

paradigm. This model enhances feature integration via a Self-Attention Variational Encoder (SAVE) and 

coordinates segmentation and modality reconstruction through a Squeeze-Fusion-Excitation Cross-Awareness 

(SFECA) module. It achieved state-of-the-art performance on the BraTS 2024 dataset, particularly under missing 

modality scenarios, highlighting the effectiveness of joint modeling and adaptive attention mechanisms in 

addressing such complex challenges. In terms of data synthesis approaches, Sharma et al. [29] explored the 

potential of generative adversarial networks (GANs) to synthesize missing MRI sequences. Knowledge distillation 

techniques aim to transfer knowledge from a teacher model trained on complete modality data to a student model 

operating on partial modalities. This strategy maintains segmentation performance while reducing reliance on 

complete data [30]. Originally developed for intra-domain CNN knowledge transfer, recent studies have extended 

this paradigm to inter-domain and cross-modal distillation [31]. Rahimpour et al. [32] proposed a cross-modal 

distillation method that leverages multi-sequence training data to enhance the segmentation performance of single-

sequence CNNs. 

 

2.3 Model Design and Optimization 

 

2.3.1 Representative deep learning models 

 

Commonly used deep learning models have significantly advanced the field of medical image segmentation. 

AlexNet is a deep convolutional neural network designed to process 2D image data, typically taking RGB images 

of size 224×224 pixels as input [33]. VGG improves performance by increasing the network depth, allowing for 
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more complex feature extraction [34]. Fully Convolutional Networks (FCNs) enable pixel-level predictions for 

images of arbitrary sizes through an end-to-end architecture, making them highly suitable for 2D and 3D medical 

image segmentation tasks. By removing the fully connected layers found in traditional CNNs, FCNs preserve the 

spatial resolution of input images, thereby enhancing segmentation accuracy [35]. GoogLeNet extracts features at 

multiple scales using a parallel architecture with convolution kernels of varying sizes. This design improves 

computational efficiency and reduces the number of parameters [36]. DenseNet, through its densely connected 

structure, enables feature reuse throughout the network. This approach not only decreases the number of 

parameters but also alleviates the vanishing gradient problem, thereby improving both performance and efficiency 

[37]. The DeepLab family of models further boosts segmentation accuracy by incorporating atrous (dilated) 

convolutions and Conditional Random Fields (CRFs) for post-processing [38]. Among them, DeepLabv3+ 

introduces a feature aggregation module to better integrate multi-scale features within an encoder-decoder 

architecture using dilated convolutions. Building upon FCN, U-Net introduces skip connections to merge high-

level semantic information with low-level spatial details in the decoding phase. This design preserves information 

at every scale and improves feature map utilization, making U-Net particularly effective for biomedical 

segmentation tasks [39]. V-Net extends the U-Net architecture to 3D, specifically for volumetric medical imaging 

such as MRI and CT scans. Although this increases computational demands, it also enables the network to capture 

richer contextual information [40]. Recently, Transformers—originally developed for sequence modeling—have 

been adopted in medical imaging due to their ability to model long-range dependencies. Utilizing the self-attention 

mechanism, Transformers capture global contextual information effectively and are particularly well-suited for 

processing complex and multimodal medical image data [41, 42]. Each of these models offers unique strengths 

and advanced feature extraction capabilities, and they are widely employed in the development of modern medical 

image segmentation systems. 

 

2.3.2 Loss functions and evaluation 

 

The overall performance of a segmentation model depends not only on the network structure but also on the loss 

function [43]. The distribution of brain tumor regions and non-tumor regions makes the segmentation task 

inherently class-imbalanced, and the choice of an appropriate loss function for a given task has a great impact on 

the experimental results. The loss function is used to represent the degree of difference between the predicted and 

labeled values. During the training process, the model continuously fine-tunes the weights and biases of the 

network to minimize the loss function value and improve the performance of the model. An overview of commonly 

used loss functions for network models is provided in Table 2.  The commonly used loss functions are not suitable 

for training the network. If these loss functions are used singularly, the training of the convolutional network will 

be dominated by non-tumor regions with more pixels, and smaller brain tumor regions will have a hard time 

learning their features, which will reduce the effectiveness of the network and lead to poor segmentation results. 

Therefore, in most cases, multiple loss functions can be used to adaptively weight the categories according to the 

specific task, or targeted to use loss functions based on their characteristics to speed up convergence. 

 

2.3.3 Evaluation indicators 

 

The current performance evaluation metrics for assessing model architectures are shown in Table 3. 

Table 2: Commonly used loss functions for network models. 
Loss 

Function 
Formula Describe Proposer 

Cross-

Entropy Loss 
LossCEL（𝑝𝑖,𝑘 , 𝑔𝑗,𝑘） = − ∑ ∑ 𝑔𝑖,𝑘

𝐾

𝑘=1

𝑛

𝑖=1

𝑙𝑜𝑔( 𝑝𝑖,𝑘) 

Applicable to multi-class 
classification tasks at the 

pixel level. 

LeCun et al. 

[44] 

Binary Cross-
Entropy Loss 

LossBCEL（𝑝𝑖, 𝑔𝑖） = −
1

𝑛
∑(𝑔𝑖

𝑛

𝑖=1

log(𝑝𝑖) + (1 − 𝑔𝑖) 𝑙𝑜𝑔( 1 − 𝑝𝑖)) 

Performs binary 

classification for each pixel 
(e.g., 

foreground/background). 

Shelhamer et 
al. [35] 

Weighted 
Cross-

Entropy Loss 

LossWCEL = −
1

𝑛
∑(𝑤𝑔𝑖

𝑔𝑖 𝑙𝑜𝑔( 𝑝𝑖) + 𝑤1−𝑔𝑖
(1 − 𝑔𝑖) 𝑙𝑜𝑔( 1 − 𝑝𝑖))

𝑛

𝑖=1

 
Solve the class imbalance 
problem when classifying 

each pixel. 

LeCun et al. 

[44] 

Dice Loss LossDL(𝑝𝑖 , 𝑔𝑖) = 1 −
2 ∑ 𝑝𝑖𝑔𝑖 + 𝜀𝑛

𝑖=1

∑ 𝑝𝑖 + ∑ 𝑔𝑖
𝑛
𝑖=1 + 𝜀𝑛

𝑖=1

 
Responsible for global 

brain tumor segmentation 

prediction 

Milletari et al. 

[40] 

Generalized 
Dice Loss 

LossGDL（𝑝𝑖,𝑘 , 𝑔𝑗,𝑘） = 1 −
2 ∑ 𝑤𝑘

𝐾
𝑘=1 ∑ 𝑝i,k𝑔𝑖,𝑘

𝑛
𝑖=1

∑ 𝑤𝑘(∑ 𝑝𝑖,𝑘
𝑛
𝑖=1 + ∑ 𝑔𝑖,𝑘

𝑛
𝑖=1 )𝐾

𝑘=1

 
Normalize the contribution 

of each category. 
Sudre et al. 

[45] 
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Focal Loss LossFL = −
1

𝑛
∑((1 − 𝑝𝑖)𝛾𝑔𝑖 𝑙𝑜𝑔( 𝑝𝑖) + 𝑝𝑖

𝛾(1 − 𝑔𝑖) 𝑙𝑜𝑔( 1 − 𝑝𝑖))

𝑛

𝑖=1

 
Solve the class imbalance 

problem. 
Lin et al. [46] 

Fusion Loss 
Loss𝐹𝑢𝑠𝑖𝑜𝑛 =

1

𝑁
(||𝐹 − 𝑆1||𝐹

2 + 𝛼||𝐹 − 𝑆2||𝐹
2 )

+ 𝛽[(1 − SSIM(𝐹, 𝑆1)) + (1 − SSIM(𝐹, 𝑆2))] 

Guides multimodal feature 

fusion via intensity and 
structure preservation. 

Liu et al. [47] 

Jensen-

Shannon 

Divergence 
LossJS（𝑝, 𝑔） =

1

2
𝐾𝐿(𝑔||𝑚) + 𝐾𝐿(𝑝||𝑚), 𝑚 =

1

2
(𝑝 + 𝑔) 

Measures similarity 

between two distributions; 

used in deep supervision. 

Englesson et 
al. [48] 

Note: Let n denote the number of samples，𝑃𝑖 and 𝑔𝑖 represent the predicted value and the ground truth, respectively. 𝜀 is the smoothing 

term to prevent division by zero，𝑊𝑘 denotes the weight of the k-th class of the i-th sample. 𝛾 is an adjustment parameter, typically set to 

2. F represents the fused image, while S1 and 𝑆2 are the input modality images, 𝛼 and 𝛽 are weighting coefficients, usually set to 2. SSIM 

stands for the Structural Similarity Index, and || . ||F denotes the Frobenius norm. KL(. ||. ) is the Kullback–Leibler divergence between two 

distributions. 

Table 3: Evaluation indicators for glioma segmentation. 
Evaluation index Formula Function description 

Dice similarity 

coefficient 
DSC =

2 × TP

2TP + FP + FN
 Calculate the similarity between two samples. 

Hausdorff distance HD(𝑃, 𝐺) = 𝑚𝑎𝑥{ sup
𝑝∈𝑃

inf
𝑔∈𝐺

||𝑝 − 𝑔||, sup
𝑔∈𝐺

inf
𝑝∈𝑃

||𝑔 − 𝑝||} Measures the maximum distance between the 
boundary points of two sets 

specificity Specificity =
TN

TN + FP
 

Reliability of the model in identifying normal tissue 

or background 

Sensitivity/Recall Sensiti𝑣𝑖𝑡𝑦(𝑅𝑒 𝑐 𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The ability to detect actual existing lesions or targets 
to prevent missed detections 

Accuracy Accuracy =
TP + TN

TP + TN + FP + FN
 

Measures the overall proportion of correct 

classification by the model.  It is difficult to reflect 

when the categories are unbalanced. 

F1-Score F1-Score= 
2 × Accuracy × Recall

Accuracy + Recall
 

Balance the recall rate and precision rate to evaluate 

the overall performance of the model. 

Intersection of Union IoU =
TP

TP + FP + FN
 

Evaluate the overall performance of the segmentation 

model. 

AUC AUC = 𝑆 
Evaluate the overall performance of the model under 

all possible classification thresholds. 

Note: p and g represent points in the prediction area and the true value area, respectively. P and G represent two different sets, and sup and 

inf represent the maximum and minimum values in the set. ||.|| represents the Euclidean distance, and S represents the area under the ROC 
curve. TP, FP, FN, and TN denote true positive, false positive, false negative, and true negative, respectively. 

 

Currently, deep learning algorithms for glioma and other related medical image segmentation tasks still face 

several critical challenges, including overfitting, class imbalance, and limited segmentation accuracy. To overcome 

these issues, researchers have proposed a range of optimization strategies, encompassing data augmentation [33], 

post-processing techniques, fusion strategies, and loss function design. 

 

To alleviate overfitting, commonly adopted methods include data augmentation, regularization techniques, and 

early stopping. Data augmentation applies transformations such as rotation, translation, and scaling to training 

images [33], thereby generating more diverse samples and reducing the model’s dependence on specific data 

distributions. Meanwhile, L2 regularization and Dropout are often used during training to control model 

complexity. Early stopping helps prevent overfitting by monitoring the performance on a validation set and halting 

training when improvement stagnates. To address class imbalance, weighted loss functions and resampling 

techniques are frequently utilized. The former assigns different loss weights to tumor and non-tumor regions, 

enabling the model to focus more on tumor structures during training. The latter balances class distribution using 

oversampling or undersampling, thus reducing the negative impact of data imbalance on model performance. To 

further enhance segmentation precision, researchers have designed more sophisticated network architectures and 

incorporated diverse fusion strategies to improve the model’s feature representation capability. 

 

Widely used deep learning architectures include Convolutional Neural Networks (CNNs), DeepLab, Generative 

Adversarial Networks (GANs), Transformers, and U-Net. These frameworks demonstrate strong capabilities in 

modeling complex structures and fine-grained details in medical images, while also offering excellent flexibility 

and scalability. On this basis, numerous studies have proposed optimized variants tailored to specific segmentation 

tasks. These models have become mainstream solutions in medical image analysis. A statistical overview of 

optimization strategies applied to different backbone networks is shown in Figure 4. 
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Figure 4: Overview of deep neural network architectures for medical image 

Table 5 further categorizes segmentation models based on fusion strategies and evaluates their performance using 

commonly adopted metrics such as Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (HD95). 

Among the publicly available datasets, BraTS 2018–2021 is the most frequently used. Notably, BraTS 2021 has 

become the most widely adopted dataset due to its comprehensive multi-modality inputs, high-quality annotations, 

and large volume. In terms of loss function design, the most commonly used combination is Dice loss and Cross-

Entropy Loss (CEL). Additionally, in Transformer-based architectures, there is a growing trend toward 

incorporating deep supervision and alignment-constrained losses to further improve segmentation performance. 

Table 5: Comparison of segmentation performance of network models. 

Model Loss Function 
Fusion 

Strategies 
Datasets 

DSC↑ HD95(mm)↓ 

WT TC ET WT TC ET 

FCN [35] CEL FLF BraTs2018 0.711 0.709 0.725 - - - 

MFD-Net [49] BCEL+DL ILF+FLF 

BraTS2018 0.908 0.856 0.820 5.99 7.00 2.85 

BraTS2019 0.908 0.857 0.767 3.41 5.83 4.45 

BraTS2021 0.927 0.887 0.854 3.51 5.77 13.98 

DPAF-Net [50] GDL FLF 

BraTS2018 0.895 0.799 0.789 5.82 8.61 5.34 

BraTS2019 0.890 0.812 0.782 8.53 7.43 3.82 

BraTS2020 0.894 0.832 0.781 - - - 

PIF-Net [51] DL+BCEL FlF 
BraTS2019 0.894 0.814 0.771 5.35 10.90 5.85 

BraTS2020 0.895 0.819 0.775 5.31 9.43 4.47 

AABTS-Net [52] 
BCEL+DL+Deep 

supervision 
ILF 

BraTS2019 0.911 0.838 0.777 3.99 6.03 3.246 

BraTS2021 0.922 0.861 0.830 4.00 11.18 17.73 

MAF-Net [53] CEL MF+FLF BraTS2020 0.880 0.679 0.418 - - - 

DMFNet [54] GDL ILF BraTS2018 0.906 0.845 0.801 4.66 6.44 3.06 

SF-Net [47] DL+Fusion FLF BraTS2020 0.891 0.834 0.810 7.10 6.44 3.89 

UDA-GS [55] DL+CEL FLF BraTS2020 0.827 0.704 0.843 6.40 6.40 3.60 

MCC-AFFM [56] DL ILF+FLF BraTS2018 0.865 0.870 0.794 4.60 3.60 2.50 

AD-Net [57] CEL+JS ILF BraTS2019 0.900 0.810 0.760 4.31 12.40 35.50 
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BraTS2020 0.900 0.800 0.760 7.22 15.30 35.20 

AMCA-Net [58] BCEL+DL FLF 
BraTS2018 0.904 0.890 0.802 10.20 7.40 4.30 

BraTS2019 0.910 0.842 0.801 10.70 8.40 4.80 

MAFF-ResUNet [7] BCEL+DL FLF BraTs2019 0.912 0.918 0.902 2.16 1.39 1.20 

mResU-Net [59] WCEL+DL FLF BraTS2021 0.928 0.929 0.8965 5.12 4.16 2.29 

U-Net [60] WCEL - BraTS2018 0.766 0.665 0.561 9.21 10.24 11.12 

AttnUnet [61] DL FLF BraTS2018 0.767 0.683 0.543 9.00 10.46 10.45 

nnUNet [20] DL+CEL ILF 
MSD 0.920 0.854 0.810 3.64 4.91 4.06 

BraTS2021 0.926 0.874 0.837 3.55 10.56 22.44 

V-Net [40] DL - 

BraTS2018 0.801 0.528 0.361 - - - 

BraTS2019 0.887 0.766 0.739 6.26 8.705 6.13 

BraTS2021 0.840 0.806 0.782 15.69 25.08 20.80 

AGSE-VNet [62] DL ILF BraTS2020 0.850 0.690 0.68 8.44 31.60 47.40 

3D U-Net [63] WCEL ILF 
BraTS2018 0.886 0.812 0.764 7.90 7.6 5.60 

BraTS2021 0.905 0.854 0.827 3.78 5.40 2.83 

MM-UNet [64] DL+FL DLF BraTS2020 0.850 0.765 0.762 8.24 10.77 6.39 

MSFR-NET [65] DL+CEL FLF 
BraTS2015 0.860 0.740 0.650 - - - 

BraTS2018 0.909 0.858 0.807 4.24 6.72 2.73 

MultiEncoder UNet 
[66] 

CEL+DL DLF 
BraTS2018 0.910 0.782 0.776 4.37 13.68 29.87 

BraTS2021 0.922 0.880 0.851 5.11 7.16 11.09 

Mirror U-Net [67] DL+CEL FLF MSD 0.925 0.858 0.781 - - - 

DTASUnet [68] 
DL+Deep 

supervision 
FLF 

BraTS2018 0.905 0.845 0.808 - - - 

BraTS2020 0.906 0.844 0.790 - - - 

TransUNet [69] DL+CEL FLF MSD 0.706 0.684 0.542 14.03 14.5 10.42 

UNETR [70] CEL+DL ILF MSD 0.789 0.761 0.585 8.27 8.85 9.35 

Swin UNet3D [71] DL FLF 
BraTS2018 0.874 0.761 0.716 - - - 

BraTS2021 0.905 0.866 0.834 - - - 

Swin UNETR [72] DL ILF BraTS2021 0.926 0.885 0.858 5.83 3.77 6.02 

TransBTS [73] DL ILF 
BraTS2019 0.900 0.819 0.789 5.64 6.049 3.74 

BraTS2020 0.901 0.817 0.787 4.96 9.77 17.95 

CKD-TransBTS [74] DL FLF BraTs2021 0.933 0.902 0.885 6.20 6.54 5.93 

Transformer-

DSUNET [75] 
DL+FL FLF BraTS2020 0.908 0.923 0.914 - - - 

nnFormer [76] 
CEL+DL+Auxiliary 

Supervision 
FLF MSD 0.913 0.860 0.818 3.80 4.49 3.87 

mmFormer [77] DL+ MF+FLF Brats2018 0.896 0.858 0.776 6.82 7.54 7.32 

NestedFormer [78] DL+CEL FLF BraTS2020 0.920 0.864 0.800 4.57 5.32 5.27 

CMAF-Net [79] CEL+DL MF+FLF 
Brats2018 0.889 0.846 0.755 4.38 6.59 5.95 

BraTs2020 0.909 0.868 0.778 4.21 5.35 4.02 

XLSTM-HVED [28] DL+CEL MF+FLF BraTS2024 0.868 0.779 0.659 11.73 11.30 8.74 

Note: ILF: Input-level fusion; FLF: Feature-level fusion; DLF: Decision-level fusion; MF: Missing-modality fusion. 

 

Regarding fusion strategies, each has its own strengths and application scenarios: ILF is suitable for scenarios with 

complete multimodal inputs. Representative models such as V-Net and 3D U-Net concatenate modality-specific 

images at the input stage, allowing the network to process them jointly. FLF is the most widely adopted fusion 

strategy. Models like AttnUnet, UNETR, nnFormer, U-Net++, and nnUNet fall into this category. A common 

enhancement in FLF involves incorporating attention mechanisms to improve the quality of multi-modal feature 

fusion. For instance, AGSE-VNet [62] integrates SE (Squeeze-and-Excitation) modules [39] in each encoder to 

model inter-channel dependencies and adaptively recalibrate feature responses. Another representative module is 

CBAM (Convolutional Block Attention Module) [80], which effectively enhances the network’s attention to 

salient features. Additionally, many models embed multi-scale feature extraction modules, such as ASPP (Atrous 

Spatial Pyramid Pooling) [81], which capture contextual information at different receptive field scales, thereby 

improving the network’s ability to delineate tumor boundaries and structures [60]. MF has gained increasing 

attention in recent years, particularly in clinical scenarios where some input modalities may be unavailable. This 

strategy enhances model robustness and generalization under incomplete data conditions. DLF is more commonly 

found in earlier approaches. A notable example is the DLF model proposed by Xie et al. [82], which simulates a 

multi-atlas segmentation process by constructing a three-stage U-Net architecture with a weighted voting sub-

network to perform decision-level fusion of multiple subnetworks. This approach is particularly well-suited for 

ensemble models with parallel structures. 

 

3. RESEARCH AND PROSPECTS 
 

3.1 Dataset Acquisition and Standardization 
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Data availability and standardization are fundamental challenges in advancing deep learning applications for 

glioma segmentation. While deep learning models can automatically extract rich feature representations from 

medical images, they require a large volume of high-quality, expert-labeled datasets for effective training. 

However, obtaining such datasets is often constrained by the cost and labor-intensive nature of manual annotation. 

To mitigate these limitations, dimensionality reduction techniques and tumor slicing methods have been employed, 

though they often compromise contextual information, leading to inaccurate boundary delineation [83]. 

Additionally, substantial variations in imaging devices, acquisition protocols, spatial resolution, contrast, and noise 

levels across institutions complicate the integration and comparison of datasets [84]. The fusion of data from 

different modalities, such as MRI, CT, and PET, further increases the complexity of standardization due to 

modality-specific characteristics and formats. Addressing these issues requires the development and adoption of 

unified standards for data acquisition and preprocessing. International organizations, including the National Cancer 

Institute (NCI) and the Radiological Society of North America (RSNA), are actively promoting standardized 

imaging protocols. Furthermore, the application of deep learning-based alignment and normalization techniques 

has shown promise in reducing inter-institutional data inconsistencies, thereby facilitating more effective 

multimodal data fusion and model training. 

 

3.2 Outline Accuracy and Related Organ Protection 

 

Precise delineation of target regions is crucial for maximizing the efficacy of glioma treatments while minimizing 

radiation exposure to healthy tissues. Accurate segmentation ensures that therapeutic doses are concentrated on 

tumor tissues, thus improving treatment outcomes and reducing the risk of cognitive and functional impairments. 

For instance, protecting critical structures such as the hippocampus during radiotherapy is essential, as damage to 

this region may result in significant memory and learning deficits. Given the interpatient variability in tumor 

characteristics and brain anatomy, personalized radiotherapy planning based on individual imaging profiles and 

biomarkers is necessary to achieve optimal therapeutic efficacy with minimal adverse effects. This process 

demands close multidisciplinary collaboration among radiation oncologists, radiologists, physicists, and 

dosimetrists, supported by rigorous quality control, periodic imaging evaluations, and adaptive treatment planning 

to account for anatomical changes throughout therapy. 

 

3.3 Model Performance and Interpretability 

 

As deep learning models increasingly influence clinical decision-making, ensuring their high performance and 

interpretability becomes imperative. While many models achieve impressive segmentation accuracy, the "black 

box" nature of deep learning remains a significant barrier to clinical acceptance. Improving model transparency 

through interpretability techniques is essential for gaining clinicians’ trust and facilitating the safe deployment of 

AI systems in practice. Integrating imaging features with pathological and histomorphological data can enhance 

the biological relevance of model predictions, enabling a deeper understanding of glioma behavior at cellular and 

tissue levels. In parallel, stringent validation protocols using diverse and independent datasets are necessary to 

assess model robustness and generalizability, ensuring their reliability across different clinical settings. 

 

3.4 Clinical Translation 

 

Bridging the gap between research and clinical practice requires careful validation, regulatory approval, and 

integration of multimodal image segmentation technologies into existing healthcare infrastructures. Thorough 

clinical validation is essential to demonstrate the safety, effectiveness, and generalizability of these models. In 

addition, clinicians must receive comprehensive training on the operation, interpretation, and limitations of AI-

assisted tools to ensure their safe application. Modifications to hospital information systems and workflows are 

also necessary to accommodate new technologies seamlessly. However, financial and resource constraints often 

hinder widespread adoption. Therefore, fostering multidisciplinary collaboration among researchers, clinicians, 

and engineers is critical to facilitate translation efforts. Conducting large-scale clinical trials and validation studies, 

developing detailed operational guidelines, and promoting supportive policies and funding mechanisms are vital 

strategies to accelerate the clinical implementation of multimodal segmentation technologies. 

 

4. CONCLUSION 
 

In this paper, we present a comprehensive overview and analysis of the application of deep learning techniques in 

multimodal image fusion and segmentation for gliomas. Based on an extensive review of recent literature, several 

key conclusions can be drawn. 
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Deep learning has demonstrated significant potential for brain tumor segmentation compared to traditional 

methods. Techniques such as convolutional neural networks (CNNs), DeepLab, generative adversarial networks 

(GANs), Transformers, and U-Net architectures have enabled accurate semantic segmentation using multimodal 

images including CT, MRI, and PET. These advances have improved the diagnostic accuracy and treatment 

planning for gliomas, ultimately contributing to increased patient survival rates and quality of life. With the 

evolution of medical imaging technology, multimodal fusion approaches have provided considerable advantages 

by integrating complementary information from different imaging modalities. Strategies such as layer-level fusion 

and decision-level fusion enhance both segmentation accuracy and the descriptive richness of tumor characteristics, 

improving the robustness and versatility of brain tumor segmentation. Despite the current challenges related to 

data acquisition, standardization, and multimodal integration, these limitations are expected to be progressively 

addressed through the development of public datasets, the establishment of unified imaging standards, and the 

application of advanced preprocessing techniques. Furthermore, improving model interpretability and accuracy 

will strengthen clinical practitioners' trust in artificial intelligence technologies, facilitating their adoption in 

clinical practice. It is important to emphasize that computer-aided diagnostic systems are intended to assist, rather 

than replace, human expertise. 

 

Future research should focus on the optimization of segmentation algorithms, the effective fusion of incomplete 

or heterogeneous multimodal data, and the overall enhancement of model performance, aiming to achieve more 

precise glioma diagnosis and better prognostic outcomes for patients. 
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