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Abstract: To describe the spatiotemporal propagation paths of public emotions during major public health emergencies, 

this study builds a cross-modal risk analysis framework that integrates remote sensing heatmaps, social media text, and 

epidemic data. A BERT-based text sentiment model and a CNN-LSTM multimodal embedding method are used, combined 

with graph convolutional networks to capture regional diffusion effects. Using the early 2020 epidemic as a case, the model 

successfully identified several high-incidence areas of social panic up to two weeks in advance. The results show significant 

value for precise government intervention and resource allocation. 
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1. INTRODUCTION 
 

Major public health emergencies are often accompanied by large-scale public emotional fluctuations and abnormal 

social behaviors [1]. Taking the COVID-19 outbreak in early 2020 as an example, over 80,000 confirmed cases 

were reported in mainland China within only 60 days [2]. During the same period, more than 120 million related 

posts were published daily on social media [3]. Among them, strongly emotional content such as “panic,” “anger,” 

and “anxiety” accounted for 64.5%. In this process, social media not only became the main channel for rapid 

information dissemination, but also gradually evolved into a platform that aggregates and amplifies public 

emotions [4]. Many studies have found that high-frequency emotional words in online discussions, as well as the 

patterns of emotional spread, are significantly correlated with actual epidemic trends [5-8]. Abnormal emotions 

often appear earlier than epidemic indicators, and thus serve as important early signals of potential risks [9]. At 

present, emotion propagation modeling has achieved some initial progress in both theoretical frameworks and 

technical methods [10]. Most mainstream approaches rely on natural language processing and time-series 

modeling. These methods usually extract user sentiment polarity through sentiment dictionaries or classifiers and 

use models such as LSTM or Transformer to represent temporal dynamics [11-12]. However, three limitations 

remain. First, they lack sufficient consideration of how emotion spreads in geographic space, making it difficult to 

reveal cross-regional influence and propagation paths [13]. Second, they mainly rely on text data and do not 

effectively combine multi-source information such as remote sensing, population mobility, or environmental 

variables [14]. As a result, they fail to capture the interaction between online behavior and real-world conditions. 

Third, the accuracy of existing models is limited during the early stages of an epidemic when uncertainty is high, 

making it difficult to provide timely guidance for government intervention and response [15]. 

 

In recent years, cross-modal fusion has become an effective way to address these problems. Studies show that 

combining remote sensing images with social media data can improve regional risk identification in areas such as 

disaster forecasting and public health [16]. For example, a thermal remote sensing study covering 31 provinces in 

China during the epidemic found a strong positive correlation between nighttime light intensity, population density, 

and the social panic index (r > 0.65, p < 0.001) [17]. Another study that used MODIS temperature maps together 

with epidemic curves reported an improvement in prediction accuracy of more than 10% [18]. In addition, graph 

neural networks—such as graph convolutional networks and spatial attention mechanisms—have been widely 

used in modeling regional emotion spread [19]. These methods can effectively detect hidden emotional 

transmission between cities and interference between adjacent areas [20]. They also solve the problem that 

traditional neural networks cannot handle non-Euclidean spatial structures. Based on this background, this paper 

proposes a cross-modal risk modeling framework that integrates remote sensing heatmaps, social media text and 
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epidemic data [21]. A BERT-based structure is used to extract emotional semantics from text. A CNN-LSTM 

model is applied to capture spatial dynamics from remote sensing features. A graph convolutional network is used 

to construct a geographic adjacency graph and model regional diffusion [22]. Using early 2020 as the case study, 

the results show that the model can identify multiple potential high-risk areas of social panic 7 to 14 days in 

advance. The overlap rate with actual outbreak regions reached 84.7%. The F1-score of prediction improved by 

12.6%, and the false alarm rate was significantly reduced. In several cases, the spatial emotion propagation maps 

generated by the model closely matched the later allocation of medical resources, verifying its value in supporting 

policy decisions and optimizing public resource deployment [23]. 

 

The study aims to address the current limitations in spatial mechanism modeling, cross-modal fusion, and risk 

warning within emotion propagation research. It promotes the development of multi-source emotion modeling for 

complex emergencies toward better timeliness, accuracy, and interpretability. This work has important theoretical 

and practical significance for social governance and public safety. 

 

2. MATERIALS AND METHODS 
 

2.1 Materials and Experimental Site 

 

This study selected the period from January 20 to March 15, 2020, in mainland China as the study window. This 

period covers the early outbreak and peak stages of the epidemic and includes 31 provincial-level administrative 

regions. The data used in the study consisted of three types: (1) Social media text data, collected from the Sina 

Weibo API and a third-party data platform. Keywords included “epidemic,” “lockdown,” “mask,” “anxiety,” and 

“panic buying.” (2) Remote sensing heatmap data, obtained from the NASA MODIS land surface temperature 

product (MOD11A1) and the VIIRS nighttime light imagery product. The data had a spatial resolution of 1 km and 

were updated daily. (3) Confirmed case and public opinion event data, compiled from the National Health 

Commission and the People’s Daily Online public opinion monitoring system. The county or city level was used as 

the smallest spatial unit. All spatial data were projected using the WGS84 coordinate system. All time-series data 

were synchronized on a daily basis. The selected area includes typical gradients in population density, climatic 

conditions, and social media activity. This makes it suitable for validating the modeling and early warning of 

cross-modal emotion propagation paths. 

 

2.2 Experimental and Control Design 

 

To evaluate the effectiveness and generalizability of the cross-modal model, a two-group experiment was designed. 

The experimental group used a tri-modal integrated model combining text, remote sensing, and epidemic data. 

Two control groups were set up: one using only text data (single modality) and the other using text and epidemic 

data (dual modality). All models used a sliding time window of 7 days for modeling and prediction. Clustering 

analysis and diffusion path tracking were conducted based on the emotional index of each spatial unit. The 

emotional index was calculated using a weighted combination of emotional intensity and the proportion of 

negative emotion. To control for data bias, all input data were standardized before training. Model performance 

was evaluated using Accuracy, F1-score and AUC-ROC. Each experiment was repeated three times, and the 

average values were calculated to ensure statistical significance. 

 

2.3 Data Collection and Analysis Methods 

 

Social media data were obtained using a multithreaded web crawler written in Python. Collected fields included 

timestamps, user locations, and post content. Advertisements and irrelevant information were removed using 

regular expressions and manual review [24]. Text sentiment classification was performed using a BERT-based 

Chinese emotion recognition model. The training data came from the public ChnSentiCorp and WeiboEmotion 

datasets. The model achieved an F1-score of 0.92. Remote sensing data were extracted and clipped to the study 

area using the Google Earth Engine platform. A convolutional filter was applied to reduce the impact of cloud 

interference. Epidemic data were collected and aggregated daily through an API. These data were spatially 

matched with geographic boundary files (administrative district shapefiles). All data underwent temporal 

alignment, spatial interpolation, and normalization before being input into the model. Text and image data were 

further mapped into a unified feature space through a feature embedding layer. 

 

2.4 Model Construction or Numerical Simulation Procedures 
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The cross-modal modeling process includes three main modules: text emotion encoding, spatial modeling of 

remote sensing images, and construction of regional diffusion structures [25-27]. For the text module, a pre-trained 

Chinese BERT model was used to extract sentence vectors. These vectors were then passed through a two-layer 

BiLSTM to obtain temporal context-dependent features. For the remote sensing module, a CNN was used to 

extract spatial features from heatmaps. The input consisted of four channels: daily average LST, LST variance, 

nighttime light intensity and NDVI. These features were then fed into an LSTM to model temporal trends in the 

sequence. Finally, all spatial units were connected through a shared adjacency matrix to construct a regional 

propagation graph. This graph was input into a graph convolutional network (GCN) to model spatial diffusion. The 

model was trained in an end-to-end manner. The loss function combined multi-task cross-entropy with mean 

squared error (MSE). The optimizer used was Adam, with an initial learning rate of 1e-4. Model training was 

performed on the TensorFlow 2.13 platform. The GPU environment was NVIDIA RTX 3090. All training was 

completed within 3 hours. 

 

2.5 Quality Control and Data Reliability Assessment 

 

To ensure the accuracy and stability of the data and model results, multiple quality control strategies were applied. 

Social media text data underwent two rounds of cleaning and sentiment annotation review. The final data retention 

rate was 72.8%. Remote sensing data were corrected using cloud masking and spatial interpolation during 

preprocessing. The missing data rate was controlled below 1.6%. Epidemic data were cross-checked at both 

provincial and county levels. The discrepancy between levels was less than 2.4%. An early stopping mechanism 

and cross-validation were used during model training to avoid overfitting. The stability of the results was verified 

by repeating the experiment five times with different random seeds. The variance of performance metrics in all 

cases was less than 0.02. Confidence interval estimates were retained for the output of each spatiotemporal node. 

The results were also compared with third-party public datasets, including the Baidu Migration Index and Tencent 

Epidemic Heat Index, to enhance the credibility and interpretability of the findings [28]. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Spatial Clustering of Emotions and Geographic Coupling with Epidemic Spread 

 

The study found that negative public emotions during the early stage of the epidemic showed a clear spatial 

clustering pattern. Taking the first week of February 2020 as an example, the emotional index rose rapidly in many 

cities in Central and Eastern China. The increase was especially prominent in Wuhan, Wenzhou and Guangzhou. 

The heatmap showed that the areas with high emotional values closely matched the spatial distribution of newly 

confirmed cases during the same period. The spatial overlap rate reached 78.4% (Figure 1a and Figure 1b). Further 

quantitative analysis revealed that the Pearson correlation coefficient between the negative emotion index at the 

city level and the density of confirmed cases was 0.71 (p < 0.001). This indicates that public panic was closely 

related to the outbreak in both time and space. This emotion–epidemic coupling pattern has been confirmed in 

multiple studies combining remote sensing and social media data. These findings support the conclusion that 

public emotion can serve as an early warning signal for potential risks [29]. 

 
Figure 1a: Spatial distribution map of the emotional index. 
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Figure 1b: Spatial distribution map of COVID-19 confirmed case density. 

3.2 Performance Differences and Gain Effect of Multimodal Fusion 

 

In model evaluation, the multimodal model that integrates remote sensing, text, and epidemic data showed the best 

performance across multiple metrics. The F1-score increased to 0.873, and the AUC value exceeded 0.91. These 

results were significantly better than those of the control models using only text data or text combined with 

epidemic data [30]. The performance radar chart (Figure 2a) shows that the model achieved a good balance among 

accuracy, recall, and precision. It avoided the classification bias that often occurs when using a single data type. In 

terms of regional adaptability, box plot analysis of samples from different regions (Figure 2b) shows that the 

multimodal model maintained stable outputs even in areas such as North China and South China, where social 

media activity was relatively low. This indicates stronger generalization ability. This fusion gain phenomenon has 

also been supported by several recent studies. The results suggest that combining remote sensing with unstructured 

text helps bridge the semantic gap between “online perception” and “offline reality.” 

 
Figure 2a: Radar chart of model performance metrics. 
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Figure 2b: Box plot of F1-scores across different regions. 

3.3 Regional Diffusion Structure and Emotion Propagation Path Identification 

 

In modeling emotion propagation paths, the regional diffusion graph constructed by the graph convolutional 

network revealed structural features of several “central nodes” and “diffusion edges” (Figure 3a). In cities with 

high population mobility, such as Nanjing and Zhengzhou, emotional peaks on social media were not only strongly 

concentrated locally but also showed chain-like transmission to nearby areas. Among the top ten nodes in terms of 

propagation intensity, they accounted for only 12.5% of all nodes but controlled more than half of the total edge 

weights in the diffusion network (Figure 3b). This pattern—where very few nodes drive widespread 

diffusion—confirms the uneven nature of emotion propagation in geographic space. It is also consistent with the 

typical power-law distribution found in complex networks. Further observation from the three-dimensional 

visualization shows that high-intensity nodes were often located at bridge positions in the diffusion structure [31]. 

These nodes played a clear role in connecting different regions. 

 
Figure 3a: Two-dimensional spatial diffusion network. 
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Figure 3b: Three-dimensional emotional influence network. 

3.4 Comprehensive Comparison and Analysis of Theoretical and Applied Value 

 

Overall, this study demonstrates both theoretical innovation and practical value in cross-modal modeling of 

emotion propagation. First, compared with the traditional research paradigm based on semantic classification, the 

proposed model achieves a breakthrough by deeply integrating remote sensing heatmaps with the semantics of 

social media text. This significantly improves the accuracy and robustness of regional emotion recognition. 

Second, by introducing graph neural networks to capture spatial diffusion paths, the model gains the ability to 

identify spatial influence structures. This addresses the previous lack of interaction modeling between regions in 

emotion propagation research. Compared with recent mainstream studies, this work not only performs better in 

prediction metrics, but also provides practical solutions in terms of interpretability and real-world application [32]. 

The identified high-risk emotional nodes and diffusion paths can directly support decision-making in resource 

allocation, information intervention, and regional lockdown strategies during epidemic-related emergencies. In 

addition, the proposed method has strong generalization ability. It can be extended to other scenarios that require 

public opinion risk warnings, such as natural disasters and financial crises, showing good potential for 

cross-domain application. 

 

4. CONCLUSIONS 
 

This study proposes a cross-modal modeling framework for emotion propagation and risk warning during major 

public health emergencies. The framework integrates remote sensing images, social media text, and epidemic data. 

Semantic emotion features are extracted using BERT. Remote sensing spatial dynamics are modeled using 

CNN-LSTM. A regional diffusion structure is built using a graph convolutional network (GCN) to support 

accurate identification of emotion propagation paths and spatiotemporal evolution analysis. 

 

Using the early 2020 COVID-19 outbreak in mainland China as a case, the results show that the model can identify 

multiple high-risk areas of social panic 7 to 14 days in advance. The spatial overlap with later outbreak areas 

reaches 84.7%. The model achieves an F1-score of 0.873 and an AUC of 0.914. Compared with single-modal and 

dual-modal baseline models, the proposed tri-modal model improves prediction accuracy and regional 

generalization by 8 to 12 percentage points, showing a clear modeling advantage. 

 

The main innovation of this study lies in the deep fusion of multi-source heterogeneous data and the explicit 

modeling of spatial emotion propagation structures. It overcomes the limitation of traditional text-based sentiment 

analysis, which cannot describe geographic propagation. The model has strong interpretability and transferability, 

and provides theoretical support and technical solutions for public emotion monitoring, risk identification, and 

resource allocation during emergencies. 

 

It should be noted that the model currently relies on publicly available social media data, which may underestimate 

emotional responses among groups with limited digital access. In addition, the spatial resolution of remote sensing 
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and epidemic data is still limited by administrative boundaries and image quality, which makes it difficult to 

capture micro-scale urban dynamics. Moreover, the model does not yet include individual mobility data, which 

restricts the fine-grained modeling of the emotion–event coupling mechanism. 

 

Future studies may extend the framework in the following ways: (1) integrating spatiotemporal behavior data such 

as mobile phone location and traffic records to improve dynamic adaptability in path modeling; (2) incorporating 

high-resolution remote sensing imagery and multilingual text to enhance spatial and semantic representation; (3) 

conducting cross-event transfer experiments to evaluate the model’s generalization and robustness in scenarios 

such as natural disasters and financial crises. The ultimate goal is to build a cross-modal early warning platform 

with real-time processing and spatial prediction capabilities, providing technical support for the modernization of 

the social governance system. 
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